The pathogenesis of diabetic complications: the role of DNA injury and poly(ADP-ribose) polymerase activation in peroxynitrite-mediated cytotoxicity.

نویسندگان

  • Levente Kiss
  • Csaba Szabó
چکیده

Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Requirement of intracellular calcium mobilization for peroxynitrite-induced poly(ADP-ribose) synthetase activation and cytotoxicity.

Peroxynitrite is a cytotoxic oxidant produced during shock, ischemia reperfusion, and inflammation. The cellular events mediating the cytotoxic effect of peroxynitrite include activation of poly(ADP-ribose) synthetase, inhibition of mitochondrial respiration, and activation of caspase-3. The aim of the present study was to investigate the role of intracellular calcium mobilization in the necrot...

متن کامل

[Influence of diabetes mellitus on cerebral ischemia and reperfusion injury].

Cerebral ischemia, caused by disturbance of the blood supply to the brain, is a major cause of death in our days. Diabetes mellitus exacerbates neuronal death induced by an ischemic insult. It is important to characterize the underlying mechanism of the cell damage in order to design therapeutic agents. The purpose of this study is to summarize some of the intracellular events leading to aggrav...

متن کامل

Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy.

Oxidative and nitrosative stress play a key role in the pathogenesis of diabetic neuropathy, but the mechanisms remain unidentified. Here we provide evidence that poly(ADP-ribose) polymerase (PARP) activation, a downstream effector of oxidant-induced DNA damage, is an obligatory step in functional and metabolic changes in the diabetic nerve. PARP-deficient (PARP(-/-)) mice were protected from b...

متن کامل

The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes.

Patients with diabetes exhibit a high incidence of diabetic cardiomyopathy and vascular complications, which underlie the development of retinopathy, nephropathy, and neuropathy and increase the risk of hypertension, stroke, and myocardial infarction. There is emerging evidence that the activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) importantly contributes to the developmen...

متن کامل

New insights on oxidative stress and diabetic complications may lead to a "causal" antioxidant therapy.

Evidence implicates hyperglycemia-derived oxygen free radicals as mediators of diabetic complications. However, intervention studies with classic antioxidants, such as vitamin E, failed to demonstrate any beneficial effect. Recent studies demonstrate that a single hyperglycemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain seems to be the first an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Memorias do Instituto Oswaldo Cruz

دوره 100 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2005